Internationales Wissenschaftlerteam analysiert erstmals Staub aus dem Interstellaren Raum
Hubertus von Bramnitz
Berkeley/Frankfurt/Heidelberg/Mainz (Weltexpresso) – Die gemeinsame Suche nach Interstellaren Staubkörnern war erfolgreich. Der Interstellare Raum ist in der Vorstellung der meisten Menschen völlig leer. Tatsächlich enthält er aber einige Prozent der gesamten verfügbaren Masse der Galaxie.
Diese so genannte interstellare Materie ist zudem extrem wichtig, da aus ihr neue Sterne und Planetensysteme entstehen. Sie enthält die Grundbausteine aller uns bekannten Himmelskörper einschließlich der Erde.
Der größte Teil dieser Materie besteht aus den Gasen Wasserstoff und Helium, nur ein Hundertstel davon ist Staub. Dieser enthält alle schweren Elemente, die die Baustoffe für die erdähnlichen Planeten liefern und damit auch als Grundlage für Leben gelten. Von dieser nicht aus unserem eigenen Sonnensystem stammenden Urmaterie wurden nun erstmals Proben von einer Raumsonde zur Erde zurückgebracht und in den am besten hierfür geeigneten Laboratorien der Welt untersucht.
Bekannt wurde die Stardust-Mission durch ihren spektakulären Flug durch den Schweif des Kometen Wild 2. An der Untersuchung der Proben hatten einige der deutschen Wissenschaftler bereits mitgewirkt. Die Raumsonde sammelte aber auch monatelang Staubpartikel aus dem Interstellaren Raum mit einer etwa einen halben Quadratmeter großen Auffangvorrichtung. Die winzigen, unvorstellbar schnell fliegenden Körner, die sich wahrscheinlich um sterbende Sterne und während Supernovae gebildet haben, wurden dabei in einem transparenten Glasschaum eingefangen. Nach der erfolgreichen Rückkehr der Proben begann die umfangreiche und aufwendige Suche nach den Mikropartikeln.
„Der Aufwand, diese Partikel im Glasschaum zu entdecken war so groß, dass man die ganze Welt um Mithilfe bat“, sagt Frank Brenker. Insgesamt beteiligten sich über 34 000 Laien an der Suche und investierten hierfür große Teile ihrer Freizeit. Die große Anzahl freiwilliger Helfer zeigt, dass die Untersuchungen auf großes gesellschaftliches Interesse stoßen. „Es ist das erste mal überhaupt, dass Material untersucht wird, welches nicht aus unserem eigenen Sonnensystem stammt. Es ist quasi unser Kontakt mit anderen Bereichen unserer Galaxie“, erklärt Brenker. „Hier gibt es offensichtlich ein großes Bedürfnis nach wissenschaftlichen Antworten.“
Vielversprechende Einschlagspuren des Auffangbehälters der Stardust-Raumsonde, an deren Ende sich die winzigen Teilchen befanden, wurden von der Arbeitsgruppe von Prof. Frank Brenker (Goethe-Universität Frankfurt) mittels hochempfindlicher nano-Synchrotron-Röntgenfluoreszenz am ESRF in Grenoble untersucht. Die Messungen führten schließlich zur Identifizierung der ersten Kandidaten für Körner mit interstellarem Ursprung.
Weitere Einschlagsspuren wurden am Max-Planck-Institut für Chemie in Mainz mittels hochauflösender Sekundärionenmassenspektrometrie von der Arbeitsgruppe von Dr. Peter Hoppe studiert. Um vielversprechende Einschlagspuren überhaupt zu identifizieren und von ihnen auf die Einschlagsgeschwindigkeit und andere Eigenschaften der einschlagenden Teilchen (beispielsweise Masse, Porosität, chemische Zusammensetzung) rückschließen zu können, wurden Kollektoren in Heidelberg in Kooperation mit der Universität Stuttgart (Dr. Ralf Srama) mittels eines weltweit einzigartigen Staubbeschleunigers beschossen, um den Einschlagprozess zu simulieren und zu kalibrieren.
Die Ergebnisse des internationalen Konsortiums wurden nun im Wissenschaftsmagazin SCIENCE (Westphal et al. 2014) veröffentlicht. Bislang konnten wenige größere (Mikrometer große) Teilchen untersucht werden. Zwei Teilchen mit den schönen Namen Orion und Hylabrook wurden im Aerogel unzerstört eingefangen, ein weiteres hinterließ nur eine Einschlagspur, vier Teilchen erzeugten Einschläge auf Folien zwischen den Aerogel-Feldern.
Die untersuchten interstellaren Teilchen sind entgegen den gängigen Vorstellungen und Modellen nicht vollständig amorph, haben einen eher niedrigen Kohlenstoffanteil und stellen auch keinen direkten Hochtemperaturkondensate dar. Die Elementzusammensetzung entspricht in Teilen dem kosmischen Durchschnitt, es gibt aber wichtige Abweichungen, etwa Defizite des Elements Kalzium oder Überschüsse des Elements Aluminium. Somit weichen diese Teilchen deutlich von Durchschnittseigenschaften ab, die von astronomischen Beobachtungen und Modellierungen bisher abgeleitet wurden.
FOTO:
Pferdekopfnebel in Infrarot. Deutlich zu erkennen ist die staubreiche Region des Interstellaren Mediums, die auch als Geburtsstätte neuer Sterne und Sonnensysteme dient. Bildhinweis: NASA, ESA, und das Hubble Heritage Team (STScI/AURA)
INFO:
Informationen: Prof. Frank Brenker, Institut für Geowissenschaften, Campus Riedberg, Tel.: (069)-798-40134, Diese E-Mail-Adresse ist vor Spambots geschützt! Zur Anzeige muss JavaScript eingeschaltet sein!.
HINTERGRUND
Die Goethe-Universität ist eine forschungsstarke Hochschule in der europäischen Finanzmetropole Frankfurt. 2014 feiert sie ihren 100. Geburtstag. 1914 gegründet mit rein privaten Mitteln von freiheitlich orientierten Frankfurter Bürgerinnen und Bürgern fühlt sie sich als Bürgeruniversität bis heute dem Motto „Wissenschaft für die Gesellschaft“ in Forschung und Lehre verpflichtet. Viele der Frauen und Männer der ersten Stunde waren jüdische Stifter. In den letzten 100 Jahren hat die Goethe-Universität Pionierleistungen erbracht auf den Feldern der Sozial-, Gesellschafts- und Wirtschaftswissenschaften, Chemie, Quantenphysik, Hirnforschung und Arbeitsrecht. Am 1. Januar 2008 gewann sie mit der Rückkehr zu ihren historischen Wurzeln als Stiftungsuniversität ein einzigartiges Maß an Eigenständigkeit. Heute ist sie eine der zehn drittmittelstärksten und drei größten Universitäten Deutschlands mit drei Exzellenzclustern in Medizin, Lebenswissenschaften sowie Geisteswissenschaften.“
Mehr Informationen unter www2.uni-frankfurt.de/gu100
Internet: www.uni-frankfurt.de